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implicit pressure-velocity coupling is accomplished by deriving a pressure equation in a
procedure similar to a segregated SIMPLE algorithm using the Rhie-Chow interpolation
technique and assembling the coefficients of the momentum and continuity equations into
one diagonally dominant matrix. The extended systems of continuity and momentum
equations are solved simultaneously and their convergence is accelerated by using an

Il:(;;yi‘:;o\risl'ume method algebraic multigrid solver. The performance of the coupled approach as compared to the
Pressure-based method segregated approach, exemplified by SIMPLE, is tested by solving five laminar flow prob-
Coupled solver lems using both methodologies and comparing their computational costs. Results indicate
Segregated solver that the number of iterations needed by the coupled solver for the solution to converge to a
Acceleration techniques desired level on both structured and unstructured meshes is grid independent. For rela-

tively coarse meshes, the CPU time required by the coupled solver on structured grid is
lower than the CPU time required on unstructured grid. On dense meshes however, this
is no longer true. For low and moderate values of the grid aspect ratio, the number of
iterations required by the coupled solver remains unchanged, while the computational cost
slightly increases. For structured and unstructured grid systems, the required number of
iterations is almost independent of the grid size at any value of the grid expansion ratio.
Recorded CPU time values show that the coupled approach substantially reduces the
computational cost as compared to the segregated approach with the reduction rate
increasing as the grid size increases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

At the heart of computational fluid dynamics (CFD) is the velocity-pressure coupling algorithm that drives the fluid flow
simulations to convergence. Over the past decades efforts to develop more robust and efficient velocity-pressure algorithms
have resulted in a better understanding of the numerical issues affecting the performance of these algorithms, such as the
choice of primitive variables (density-based versus pressure-based [1]), the type of variable arrangement (staggered versus
collocated [2]), and the kind of solution approach (coupled versus segregated), to cite a few. While consensus regarding best
practices of many issues have been reached within the CFD community, for pressure-based algorithms the coupled versus seg-
regated approach dichotomy has not been completely resolved. This was clearly indicated in a recent review of pressure-
based algorithms for single and multiphase flow conducted by the authors [3], in which it was mentioned that even though
the situation is currently in favor of the segregated approach, recent work seems to indicate that this might be changing.
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Nomenclature

ag,;,ap ... coefficients in the discretized equation for¢

bp source term in the discretized equation for ¢
dpr space vector joining the grid points P and F
Dp the matrix D operator

g geometric interpolation factor

H[ ] the H operator

H[v] the vector form of the H operator

I the identity matrix

e mass flow rate at control volume face f

p pressure

P main grid point

Q general source term

S surface vector

u, v velocity components in x- and y-directions, respectively
v velocity vector

Qp volume of the P cell

Greek symbols

¢ general scalar quantity

€ grid expansion ratio

r diffusion coefficient

u dynamic viscosity

0 fluid density

Subscripts

f refers to control volume face

F refers to the F grid point

nb refers to values at the faces obtained by interpolation between P and its neighbors
NB refers to the neighbors of the P grid point
P refers to the P grid point

Xy refers to x and y directions

Superscripts

p refers to pressure

u refers to the u-velocity component

v refers to the v-velocity component

X refers to x-direction

y refers to y-direction

refers to an interpolated value

This renewed interest in the development of coupled solvers [4,5] is due to the tremendous increase in computer
memory and to the convergence problem experienced by segregated solvers when used with dense computational
meshes [6]. Even though the convergence issue has been addressed successfully through multigrid, parallel processing,
and domain decomposition the convergence issue has not been directly resolved. It is worthwhile in this respect to point
out that density-based Euler methods have been using coupled solvers quite successfully for solving highly compressible
flow problems. In the coupled approach, the conservation equations are discretized and solved as one system of equa-
tions as opposed to the segregated approach where the equation of each variable is solved separately using, previously
computed, best estimate values of the other dependent variables. Although the coupled versus segregated issue is not
directly related to the method used, traditionally it has been the case that pressure-based methods follow a segregated
approach. This state of affairs owes more to the development history of pressure-based algorithms than to any algorith-
mic limitation.

Pressure-based algorithms originated with the work of Harlow and Welch [7] and Chorin [8]. However the real thrust to
this group of algorithms was generated in the early 1970s by the CFD group at Imperial College through the development of
the well-known segregated SIMPLE algorithm (semi-implicit method for pressure linked equations) [9] for incompressible
flows. The CFD research community widely adopted the SIMPLE algorithm which led to the development of a number of SIM-
PLE-like algorithms, a review of which is reported in [10]. Furthermore, the work of Rhie and Chow [11] provided a solution
to the checkerboard problem and expanded the application area of the SIMPLE-like algorithms by enabling the use of a col-
located variable arrangement and setting the ground for a geometric flexibility similar to that of the finite element method
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(FEM) [12]. Additional developments resulted in extending the applicability of the SIMPLE-like algorithms to a wide range of
fluid physics such as compressible [1], free-surface [13], and multiphase flows [14,15].

Several pressure-based coupled algorithms have also been reported in the literature. These algorithms followed two
approaches in their development. In the first, no pressure equation is introduced and the momentum and continuity
equations are discretized in a straightforward manner. Examples of these algorithms include the SIVA (simultaneous var-
iable arrangement) algorithm of Carretto et al. [16], the SCGS (symmetric coupled Gauss Seidel) algorithm of Vanka [17],
the UVP method of Karki and Mongia [18], the method of Braaten [19], and more recently the BIP (Body Implicit Proce-
dure) of Mazhar [20], among others. Since no pressure equation is derived, zeros are present in the main diagonal of the
discretized continuity equation leading to an ill conditioned system of equations. This problem has been addressed, with
various degrees of success, through the use of pre-conditioning [6], penalty formulations [21], or by algebraic manipula-
tions [22].

In the second approach a pressure equation is derived either through the addition of pseudo-velocities [23] as in the seg-
regated SIMPLER algorithm [24] or without the addition of new variables [25] as in the segregated SIMPLE algorithm [9].
Following either method, a set of diagonally dominant equations is obtained. Using the control volume finite element meth-
od (CVFEM), Lonsdale [26] and Webster [5] followed this approach and reported impressive convergence rates and good
scaling behavior with dense meshes. However Lonsdale’s algorithm did not prove to be robust [5].

In a recent article [27], the authors reported on a pressure-based coupled algorithm for the solution of incompressible
flow problems over structured grid systems developed within the context of a finite volume formulation. Their results
showed that, for the problems presented, the CPU time per control volume is nearly independent of the grid size. The objec-
tive of this work is to extend the method to unstructured grid topology and compare the performance of the coupled algo-
rithm with the segregated SIMPLE algorithm for both structured and unstructured grids by solving a series of test problems
showing the effects of grid size, grid non-uniformity, mesh skewness, large pressure gradients, and large source terms on the
convergence rate. Extension into unstructured grid systems entails substantial changes to the algorithm (e.g. using different
numbers of control volume faces depending on the type of elements that compose the mesh, connectivity of the grid, the
algebraic equation solver, and the algebraic multigrid solver for convergence acceleration).

In the remainder of this article a brief description of the Finite Volume discretization process is presented, followed by a
short review of the segregated algorithm. Then the formulation of the coupled algorithm, the most frequently encountered
boundary conditions, the algebraic multigrid solver, and some implementation tips are detailed. Finally, the performance of
the coupled algorithm is illustrated by solving several problems.

2. Finite volume discretization

The conservation equations governing steady, laminar incompressible Newtonian fluid flow are given by
V-(pv)=0 (1)
V- (pw) =V - (uVv) = V- (pl) (2)
These equations can be expressed in the general conservative form as

V- (pvd) =V -(I'V$) +Q 3)

where the values of ¢ and I" differ depending on the equation represented.

Integrating the general transport equation over the control volume displayed in Fig. 1(a) and transforming the volume
integrals of the diffusion and convection terms into surface integrals through the use of the divergence theorem, the
semi-discretized form of the governing conservation equation using the finite volume method is obtained as

7( (ovg) - dS — 7{ (FV) - dS + / / Qdo (@)
oQ oQ Q
Evaluating these integrals using a second order integration scheme yields
> (pvhp —TV); - Sr = Qe (5)
f=nb(P)

Finally, the equation is expressed in algebraic form by representing the variables at the control volume faces in terms of
nodal values. The resulting equation is written as

apdp + Z af g = by (6)

F=NB(P)

The above equation could equivalently be written as

a by 0 9
¢p+ Z —5 ¢ =— OF ¢p + Z Ar e =By (7)

b
F=NB(P) dp ap F=NB(P)
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Fig. 1. (a) Control volume, (b) normal and tangential velocity components at a wall, and (c) decomposition of the surface into two components one aligned
with the grid and one normal to the surface vector.

For the momentum equation, the pressure gradient term is explicitly displayed as

a0
Vo + Y AW =B} — Dy Vp, with Dp = (")" o (8)

F=NB(P) @
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while for the continuity equation the following discrete form is used:

Thf =0 with Thf = PV¢ 'Sf (9)
f=nb(P)

3. The collocated SIMPLE algorithm

In the segregated SIMPLE algorithm, the solution is obtained by iteratively solving the momentum equations and a pres-
sure correction equation, derived from the continuity equation, while accounting for the effects of the pressure field on the
momentum equations through a correction to the velocity field. Denoting corrections with a prime, the corrected fields are
written as

p=p™+pandv=v+V (10)

where p’ and Vv’ are the pressure and velocity corrections, respectively. Thus, before the pressure field is known, the veloc-
ity obtained from the solution of the momentum equation is actually v" rather than v. Hence the equations to be solved
are

Vi+ > Afv; =By - DpVpy” (11)
F=NB(P)

where the final solution satisfies

Vp + Z A¥VF = Bl‘; — Dprp (12)
F=NB(P)

Subtracting the two sets of Eqs. (12) and (11) from each other yields the following equation involving the correction
terms:

Vi Y A =-DpVp, (13)
F=NB(P)

Using the Rhie-Chow interpolation [11], the velocity correction along the control volume face, is written as
Vi = Vi — Di(Vp; — Vpp) = —DyVp; + Vi + DeVp; = -DiVp; — > Afv; (14)
f=nb(P)

To derive the pressure correction equation, the following expanded form of the continuity equation [Eq. (9)] is used:

ST+ > (pv) S =0 (15)
)

f=nb(P) f=nb(P

By substituting v; from Eq. (14) into the continuity equation (Eq. (15)), the pressure correction equation is obtained

as
> (~pDeVp; S == D mp+ > pAV;-St (16)
f=nb(P) f=nb(P) f=nb(P)
Neglecting the last term in Eq. (16) as done in SIMPLE [9], the algebraic form of the pressure correction equation is written
as

a 7 p’
ap pp + Z a7 py = bp

F=NB(P)
& - (DsS¢) - St
PP dy
, ¢ (17)
ap = ag
F=NB(P)
by =— >
f=nb(P)
Using the Rhie-Chow interpolation, the mass flow rate m; at a control volume face is computed from
i = pevi St = piv; St — peDy (Vo — Vp{") - S (18)

Moreover, neglecting the last term in Eq. (14), the velocity correction is found to be

v = -D;Vp; (19)
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The overall SIMPLE algorithm can be summarized as follows:

. Solve the momentum equations implicitly for v using the available pressure field.
. Calculate the D field.

. Solve the pressure correction equation.

. Correct v and p.

. Solve sequentially all other scalar equations (if any).

. Return to the first step and repeat until convergence.

U A WN =

4. The coupled algorithm

The convergence of the SIMPLE algorithm is highly affected by the explicit treatment of the pressure gradient in the
momentum equation and the velocity field in the continuity equation. Treating both terms in an implicit manner is in es-
sence the aim of any coupled algorithm. This is achieved here by coupling the momentum equation and the pressure equa-
tion form of the continuity equation through a set of coefficients that represent the mutual influence of the continuity and
momentum equations on the pressure and the velocity fields, as described below.

Starting with the semi-discretized momentum equation given by

> (W — UV S+ Y peSr=bpQp (20)

f=nb(P) f=nb(P)
where the pressure gradient term has been integrated over the faces of the control volume and the pressure at each face is

evaluated using

Pr = &Pp + (1 — &e)De (21)

substituting Eq. (21) into Eq. (20), and manipulating, the final form of the discretized momentum equations is obtained
as

aup +a¥op + aPpp + Y. a¥up+ Y. a¥vr+ Y affpp=bp
——  F=NB(P —NB(P)

) F=NB(P) F.
vV vu vp vV vu vp _ bl) (22)
ap'vp +ap'up +alpp+ >, afvr+ >, afur+ Y. afpr=bp
= ~ F=NB(P F=NB(P) F=NB
where the coefficients are given by
St - S¢ .
a' =af’ = + ||mg, 0
F F o= M S, - dyr H I
a}i)u — Z a;:lll a}/}v _ Z a¥v
F=NB(P) F=NB(P)
a’ =0 a' =0
- Y - Y »
F=NB(P) F=NB(P) (23)

a” = (1-g0)St
@’ = Z St

f=nb(P)

u S : \
bp= Y {Vu-(sf—sff' dedeF)} by =

f=nb(P)

af = (1-g)S¢
a’ = Z &St

f=nb(P)

S¢S
Z |:VV . (Sf — Sff, deF dp]:)

f=nb(P)

It should be noted that the single underlined terms in Eq. (22) represent the pressure gradient in its implicit form; while

the double underlined terms account for the velocity component interactions with their values being zero except at wall
boundaries. Even though their values are set at zero in Eq. (23), their inclusion is necessary for the proper implementation
of the algebraic solver.

To derive the pressure equation, the semi-discretized form of the continuity equation, given by

Z PeVs + Ss=0 (24)

f=nb(P)
is combined with the Rhie-Chow interpolation to yield

S pd¥ —Di(Vpr — Vb)) - S =0 (25)

f=nb(P)
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Eq. (25) can be expanded into

> p(-DeVp) S+ Y pi-Se= Y pe(-DiVpy) - St (26)
f=nb(P) f=nb(P) f=nb(P)
where
Vi =gVp + (1 - g()Vr (27)
Substituting Eq. (27) into Eq. (26), the algebraic form of the pressure equation is obtained as
aPpp + a'up + ab'vp + Z ap; + Z aug + Z a’vg = (28)
F=NB(P) F=NB(P F=NB(P

with the coefficients evaluated as

o _ , (DiSt) St
aF *pf Sf dPF
ay = a’

F=NB(P)
' =(1-gp)S af' =(1—g)S} =
@'= D &S @= Z 85t

f=nb(P) f=nb(P

- _ S-S

bo= > pe(-DrVps)-St— > pr(~DrVpy)- (Sf*sf d» dPF)

f=nb(P) f=nb(P) rooE

Combining the discretized momentum and continuity equations [Egs. (22) and (28)], the following system of equations is
obtained for each control volume:

a a al [up a¥ a¥ af [ue by

a ay af | |ve|+ > |a¥ a¥ af ||ve|=|bp (30)
pu pv Pp F=NP(P) pu pv pp P

G Gp Op | [Pp g G Gg | | Pr by

The above set of equations expressed over the entire computational domain yields a system of equations in the form of
AP =B (31)

where all variables (v, p) are now solved simultaneously. Note that the continuity equation is now written in terms of pres-
sure rather than pressure correction.
The overall coupled algorithm can be summarized as follows:

. Start with the latest available values (1", v p™).

. Assemble and solve the momentum and continuity equation for v* and p".
. Assemble iy using the Rhie-Chow interpolation.

. Solve sequentially all other scalar equations (if any).

. Return to step 2 and repeat until convergence.

A WN =

5. Boundary conditions

The proper treatment of the boundary conditions is critical to the success of the proposed algorithm because of the cou-
pling between the governing equations. The contribution of a boundary face to the algebraic equation of the control volume
concerned depends on the type of the boundary condition. The details for implementing the most frequently encountered
boundary conditions at a wall, inlet, and outlet are given next.

5.1. The no-slip boundary condition at a moving wall

The general case of a wall moving with a velocity v,,(= uyi+ vy;) is considered; the special case of a stationary wall is
obtained by setting v,, to zero. The convection term has no effect on the momentum equation because no flow crosses
the wall. The shear stress is accounted for using the method described next.

The velocity vector at the first interior grid point (Fig. 1(b)), designated by v, (= u,i + v,j), is decomposed into two vectors
one tangential (v;) and one normal (v,) to the wall. The wall velocity (vy,) being in the tangential direction, the wall shear
stress can be calculated as

—Vw
dev ny

Tw= g (32)



M. Darwish et al. /Journal of Computational Physics 228 (2009) 180-201 187

where dp,, is the distance vector between the internal and boundary grid point, n,, is the outward unit vector normal to the
wall (ny = Ny xi + Ny = Sw/Sw), and (dpy - ny,) is the normal distance to the wall. Then the shear force F; is given by

F, = —7,Sw (33)
while the tangential velocity v, is computed from

Vi =Vp — (Vp-Ny)Ny, (34)

Combining Egs. (32) and (34), the expanded form of the shear force is written as

E {F} o uSw [ up(1=ngy) — Vel — U 35)
s Fs,y dPW L VP(l - nev,y) — UpNyxNwy — Vw
The contribution of the wall shear stress can now be incorporated into the coefficients to obtain
S S
ap = ap + (o) ap—ap T2 on)
pw w pw w (36)
S uS,
avw = g — :uW T x M. a’ = g — w Ny 1
P P T d,, -n, Y P P T dyyom, Y

Further, the pressure at the wall is extrapolated from the pressure at the main grid point using a zero order profile to yield

Dw =DPp (37)

and its contribution to the momentum equations is therefore written as
ay’ = ayf + Swx

(38)
ay = ay + Swy

Because at a wall the mass flow rate is zero, no modification is needed for the pressure equation so its coefficients remain
unchanged.

5.2. Inlet boundary condition
For an incompressible flow, either the velocity or the pressure can be specified at inlet. Both cases are presented next.

5.2.1. Specified static pressure

The flux at an interior control volume face is a function of the two control volumes straddling the face, while at a bound-
ary face the flux becomes a function of the control volume and the boundary face itself. When the value of the dependent
variable is specified, the corresponding boundary flux can be computed and moved to the source term. In a case with a spec-
ified static pressure at the inlet the pressure is known. However the velocity, being unknown, has to be interpolated. In addi-
tion, the velocity direction should be specified, because it cannot be predicted. By splitting the surface vector into two
components E and T (i.e. S = E+T), with E being aligned with the distance vector and T normal to the S vector (Fig. 1(c)),
the modified coefficients of the momentum equations at the inlet boundary are written as

. Si-Si . Si-Si
a7 = ag + ||y, O] + p g —c bp = bp + (Vu-T); + {II — 1, 0| +ud’,.s‘} Ui = PySix
bl 1 'pi i
S-S, S-S, (39)
o = af O] + gy b=+ (e Tyt I =0l + gl b,
pi * i pi * i

For the pressure equation the velocity is extrapolated from the nearest control volume and the pressure gradient term is
computed with the known inlet pressure term considered explicitly. The modified coefficients of the pressure equation are
given by

ay = ay’ + pSix
a’ = a’ + pSiy
(DiSi) - Si (40)
Si- dPL
(DiSi) - Si

PP _ PP
Gy =0p + P

by =DiVp; - Ti + p; pi—DiVp; - S

5.2.2. Specified velocity
Because the velocity is known at inlet, the convection term can be treated explicitly. The contribution of the stress term
affects the coefficient of the interior control volume, as well as the boundary itself, and a source term appears. For the pres-
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sure gradient term in the momentum equations, the pressure is extrapolated from the interior, as in the case of a wall. The
set of coefficients for the momentum equations at the inlet are modified as

auu _ auu + Hm O” + Si 'Si avv _ avv + Hm OH + Si 'Si

p = Up i 'u—dpi'si p = Up i 'u—dpi'si

u u . Si 'Si

bp =bp + (uVu-T); + ||| — 1, 0| G g | ay = ay + Six (41)
pi * i

b;:b¥,+(uVV~T),»+[H —1m;, 0] +'ud

Because the flow is incompressible, the mass flow rate at inlet is known. Therefore no modification is needed to the pres-
sure equation and its coefficients remain unchanged.

S .S;
g @ = ay s,

5.3. Outlet boundary condition

A common boundary condition at an outlet is a specified value for the static pressure. This boundary condition is similar
to the specified static pressure at an inlet boundary condition. The modified coefficients are those given by Egs. (39) and (40).

6. Linear multigrid solver

Many methods exist for the solution of large systems of linear equations and these can be categorized as being either di-
rect or indirect iterative methods. The use of a direct method is not appropriate in the present context because direct meth-
ods require by far more storage than iterative methods and are usually more time consuming. This is further magnified by
the non-linearity encountered in fluid flow calculations. The algorithm used in this work is a combination of the ILU(0) [28]
algorithm with an additive corrective multigrid method [29]. Surprisingly, this combination is found to provide the simplic-
ity and low storage needs of the basic ILU algorithm with the high convergence rate of multigrid methods.

The simplest form of incomplete factorization is based on taking a subset " of nonzero elements from the original coeffi-
cient matrix A while keeping all positions outside this set equal to zero. If 3" is chosen to coincide with the non zero elements of
A, then the factorization is called the ILU(0) [28]. For the ILU(0) method, the factorization does not produce any non zero ele-
ments beyond the sparsity of A so that the pre-conditioner requires at worst as much storage as A. To remedy the deterioration
of the convergence rate with increasing mesh size, the ILU(0) is used as a smoother for an algebraic multigrid solver.

Multigrid algorithms were independently introduced by Federenko [30] (Geometric Multigrid) and Poussin [31] (Alge-
braic Multigrid) in the 60s, and later gained popularity with the work of Brandt [32]. They are considered one of the most
efficient techniques for the numerical solution of PDEs, at least for sequential computers. While standard iterative solvers
(e.g. SOR and ILU) are efficient in removing high frequency errors, they are inefficient in removing the remaining low fre-
quency or smooth errors. Multigrid methods overcome the decay in the convergence rate by using a hierarchy of coarse grids
in addition to the one on which the solution is sought. The fundamental idea is that by restricting the problem to a coarser
grid, the lower frequency errors now appear more oscillatory.

Without going into details, the implementation of a multigrid method involves two stages. In the first stage, the coarse
grids and their connectivity are setup using an agglomeration or coarsening algorithm [33]. In the second stage, a multigrid
cycling procedure is used with a smoother to yield the solution at the finest desired grid. All segregated and coupled results
presented in this work are generated using an algebraic multigrid with an ILU(O) solver as a smoother.

7. Efficient implementation of the coupled solver

In addition to an appropriate fully implicit discretization of the Navier-Stokes’ equations, the performance of the coupled
algorithm is critically dependent on the proper implementation of an iterative solver to ensure that the increase in compu-
tational time incurred in the solution of the enlarged system of equations does not counter balance the advantage of the
higher convergence rate. In one-component systems, the coefficients represent the influences between neighboring ele-
ments, i.e. spatial influences. For a coupled system, in addition to the spatial connectivity, inter-component connections
arise. This renders the use of the algebraic multigrid iterative solver described above unsuitable. To circumvent this hurdle
and efficiently employ the one-component algebraic multigrid algorithm to solving the coupled system, the original spatial
connectivity array describing the topology of the mesh is retained for use in the agglomeration procedure of the multigrid
algorithm, while an expanded connectivity array that accounts for the inter-variable influences is constructed for the iter-
ative solver as described below.

The algebraic system of equations for a single variable ¢, over a computational domain of size n, has the following form:

ayr . . O P4 b
= | (42)

a1 Unn % bn
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where [a] is an n x n matriX, and [¢] and [b] are vectors of size n (n being the number of elements in the computational
mesh). The two vector [¢] and [b] are stored in arrays of size n, while the sparse matrix [a] is usually stored in two vectors
[ap] containing the diagonal elements represented by the array ap(i) of size n and [any] containing the neighboring coeffi-
cients. The size of [a,,] depends on the number of neighbors associated with the mesh elements and is equal to the sum over
all the mesh elements of the number of neighboring elements (i.e.sizeof[a.,] = "1, (i)). Access to an element of [a,p] is
done via and offset array, as depicted in Fig. 2, whereby the coefficients of the neighbors of the control volume i are stored
in coeff|offset(i)] to coeff[offset(i + 1) — 1].

For a coupled algorithm the equations to be solved can be written for the case of a three component system in the fol-
lowing form:

Fall q12 13 1M 412 413771 1 A b
a1 W1 4y An i O ?1 ;
21 22 423 21 22 423 2
a4 an N I T P ®1 b;
31 432 433 31 432 433 3
4G @7 aqg @G O O ? by

= (43)
11 12 13 11 412 13 1 1
pp Opi Op Gnp Opp Opp ®n bn
21 22 423 21 22 423 2
anl an] anl oo ann ann ann (Pn bi
31 432 33 31 32 33 3
- anl anl anl arm ann arm B (pn - b3

L n |

From this perspective [a] is now an n x n matrix of sub-matrices of size nin. (n. being the number of components), while [¢]
and [b] are arrays of vectors of size n.. The sparse matrix [a] of the multi-component system, which now accounts for the
inter-component influence in addition to the spatial influence between the elements, is again decomposed into the two vec-
tors [a,] containing the diagonal elements represented by the array ap(i) of sub-matrices of size n and [a,;] containing the
neighboring sub-matrix coefficients. The number of connections for a control volume i in this case becomes n¢*nc*ny(i) and
the size of [a,p] becomes n¢ * nc * Y1 ;ny(i). The storage of ap, bp, and the neighboring coefficients is shown in Fig. 3(a). To
solve this system using the standard iterative solver, the sub-matrices are first unraveled and transformed into an N*N sys-
tem of scalar equations (N = n*n.) through the formulation of an extended connectivity matrix. The process followed in con-
structing the coupled connectivity matrix is explained next by referring to the element and its neighbors displayed in Fig. 3(b
and c).

As shown in Fig. 3(b), the chosen element (element 5) is connected to elements 2, 3 and 7. The original spatial or geomet-
ric connectivity matrix is summarized in the upper part of Table 1, which displays the indices for a,, a,,, and b,. These indices
are suitable for solving a one-component system, which is the case for a segregated solution algorithm. For a coupled system,
each coefficient is transformed into a 3 x 3 matrix (Fig. 3(c)). The connectivity is maintained by renumbering the elements of
the matrix [a] according to (i*n. + 1,i*n¢ + 2,i*n. + 3) for the three components, where i is the element number under consid-
eration (5 in this case) and the 1, 2, and 3 refers to the component u,v, and p, respectively. In a similar manner, the elements
of the vector [b] are renumbered as (i*n. + ic), where i. refers to the component number (1 for u, 2 for v, and 3 for p). The
connectivity for the [a,;] coefficients is now given by (Ni.)*n. + i, (Nic) being the value in the old connectivity of the chosen
element (element 5 in this case) and i. the component under consideration. The connectivity arrays obtained by applying the
above relations are depicted in Table 1. With this approach, the original algebraic multigrid solver is used with minor
modifications.

8. Results and discussion

The performance of the coupled algorithm is assessed in this section by presenting solutions to the following five laminar
incompressible fluid flow problems: (i) lid-driven flow in a rectangular and a skew cavity, (ii) flow behind a backward facing
step, (iii) sudden expansion in a rectangular cavity, (iv) flow in a Planar Tee-Junction, and (v) natural convection in a trap-
ezoidal cavity. For all problems, results are generated using both triangular and quadrilateral control volumes on three grid
sizes with cell values of 104, 5 x 10% and 3 x 10°. The largest grid used was limited by the computational resources available
and not because of any algorithmic limitation. The same initial guess was used for all grid sizes and for both coupled and
segregated methods and the computations were stopped when the maximum residual of all variables, defined as,

N laggp+ H al by
(RES)? = max _ FNB®)

¢
i= ap Pscale
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Fig. 2. Storage of coefficients for a single component system of equations.

became smaller than a vanishing quantity, which was set at 107>, All computations were performed on a “MacBook Pro”
computer with a 2.16 GHz Intel Core Duo processor and 2 GB of RAM.

All problems were solved using both the coupled and segregated approach and the efficiency of the proposed coupled
algorithm is demonstrated by comparing the number of iterations and CPU time required by each method on the various
grids. No under relaxation was used with the coupled approach but it was needed to obtain converged solutions with the
segregated method (a, = o, = 0.7 and oy = 0.3).

8.1. Comparison of solutions generated using the coupled and segregated solvers

The physical situations for the various problems solved, along with illustrative portions of the quadrilateral and triangular
meshes used are depicted in Fig. 4. The first problem considered, which involves two configurations, is the standard CFD test
case of lid-driven flow in a square (Fig. 4(a)) and a skew (Fig. 4(b)) cavity. It is used here to check the performance of the
coupled approach in predicting recirculating flows on orthogonal and non-orthogonal unstructured grids. The second prob-
lem (Fig. 4(c)) is concerned with separated flows behind steps, which arise in many applications such as in electronic equip-
ment and combustors and is used here to check the effect of a high-pressure gradient on the performance of the coupled
approach. The third problem, depicted in Fig. 4(d), represents a sudden expansion of a flow entering a square cavity with
a side of L from a vertical section with a width of W = L/5 located in the lower left corner of the domain. The problem is solved
for a value of Reynolds number (Re = pv;,L/u) of 1000 with the velocity vector at the inlet set at v;,(1, 1). The geometry and
boundary conditions of the fourth problem, which deals with the flow split in a Planar Tee-Junction (Fig. 4(e)), are those used
by Hayes et al. [34] with the gauge pressure at the outlets set to zero. The flow enters the domain from its lower part moving
vertically upward with a parabolic velocity profile of v(0, 4x — 4x?). The problem is solved for a Reynolds number value
(Re = pVW/u, V. is the centerline velocity at inlet) of 500. The width of the domain W is set at 1 m and the length L at
3 m. The buoyancy-driven flow in a trapezoidal cavity problem, illustrated schematically in Fig. 4(f), is the one analyzed
by Moukalled and Darwish [35] and is used here to check the performance of the new algorithm for sequentially solving
the energy equation with the coupled hydrodynamic equations in the presence of a large source term on non-orthogonal
unstructured grids.

Solutions for the various problems are generated using the coupled and segregated solvers by assuming the flow to be
steady, laminar, and two-dimensional and the resulting flow fields in the domains are visualized by the streamline maps
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presented in Fig. 5(a-f). Differences between the segregated and coupled solutions can be inferred from the u- and v-velocity
contours displayed in Figs. 6 and 7, respectively. As shown, the two sets of contours are on top of each other, indicating that

both solvers produce the same solution.
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Table 1
Example of geometric and multi-component connectivity

Geometric connectivity

Element Coefficients

5 ap any anz ans bp
Connectivity

5 5 2 3 7 5

Multi-component connectivity

Element/scalar Coefficients

5 1 o' af? af’ all afp a3 b aff afy all ol by

5 2 by

5 3 @' o ap aih oty ai b a5 i} al o35 by
Connectivity (scalar, i, =1, 2, 3)

Element/scalar i3 +1, N1'3 +i, N2'3 +i, N3*3 +i, i'3+i,

5 1 16, 17,18 7,8,9 10, 11, 12 22,23,24 16

5 2 16,17, 18 7,8,9 10, 11, 12 22,23,24 17

5 3 16,17, 18 7,8,9 10, 11, 12 22,23,24 18

As a further validation check, pressure and velocity profiles along the vertical centerline of the main channel and the cen-
terline of the horizontal branch for the Tee-Junction problem generated using both solvers are compared and the results are
presented in Fig. 8(a-d). As shown, the profiles fall almost on top of each other confirming the correctness of the developed
method.

8.2. Performance of the coupled solver on unstructured meshes

A summary of the number of iterations, the CPU time, and the CPU time per control volume are presented in Table 2 for
the various problems solved on grids with triangular control volumes. Except for the flow in a Planar Tee-Junction, the num-
ber of iterations required to solve a problem is independent of the grid size. The increase in the number of iterations for the
flow in a Planar Tee-Junction problem is attributed to intermediate flow reversal at the exit section of the horizontal branch
(Fig. 5(e)) before convergence is reached causing larger changes in the coefficients between two consecutive iterations.

As expected, the CPU time increases with the number of the control volumes. A more indicative performance parameter is
the CPU per control volume, which is nearly constant (its percent variation is trivial as compared to the percent variation in
the grid size) for all problems except for the flow in a Planar Tee-Junction (for the reasons stated above).

The above findings are in line with results reported in [27], for the performance of the coupled solver on structured quad-
rilateral control volumes, and a clear indication of a successful extension of the coupled solver to unstructured grid.

8.3. Comparison of performance of the coupled solver with the segregated solver

A summary of the number of iterations and CPU time needed by both segregated and coupled approaches using
quadrilateral and triangular elements are presented for all problems and grid sizes in Table 3. Except for the flow in a Planar
Tee-Junction problem, the number of iterations required by the coupled solver for both types of control volumes is nearly
independent of the grid size. For the segregated solver this number increases with increasing the number of cells in the do-
main. The ratio of the number of iterations required by the segregated algorithm to the number required by the coupled
algorithm (S/C) for quadrilateral (triangular) elements increases from 45 to 546 (78-642), 76 to 342 (46-296), 15 to 149
(17-185), 24 to 204 (28-261), 26 to 92 (31-134), and 12 to 154 (14-143) for the driven flow in a square cavity, driven flow
in a skew cavity, backward facing step, sudden expansion in a square cavity, flow in a Planar Tee-Junction, and natural con-
vection in a trapezoidal cavity problem, 