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This paper reports on a newly developed fully coupled pressure-based algorithm for the
solution of laminar incompressible flow problems on collocated unstructured grids. The
implicit pressure-velocity coupling is accomplished by deriving a pressure equation in a
procedure similar to a segregated SIMPLE algorithm using the Rhie–Chow interpolation
technique and assembling the coefficients of the momentum and continuity equations into
one diagonally dominant matrix. The extended systems of continuity and momentum
equations are solved simultaneously and their convergence is accelerated by using an
algebraic multigrid solver. The performance of the coupled approach as compared to the
segregated approach, exemplified by SIMPLE, is tested by solving five laminar flow prob-
lems using both methodologies and comparing their computational costs. Results indicate
that the number of iterations needed by the coupled solver for the solution to converge to a
desired level on both structured and unstructured meshes is grid independent. For rela-
tively coarse meshes, the CPU time required by the coupled solver on structured grid is
lower than the CPU time required on unstructured grid. On dense meshes however, this
is no longer true. For low and moderate values of the grid aspect ratio, the number of
iterations required by the coupled solver remains unchanged, while the computational cost
slightly increases. For structured and unstructured grid systems, the required number of
iterations is almost independent of the grid size at any value of the grid expansion ratio.
Recorded CPU time values show that the coupled approach substantially reduces the
computational cost as compared to the segregated approach with the reduction rate
increasing as the grid size increases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

At the heart of computational fluid dynamics (CFD) is the velocity-pressure coupling algorithm that drives the fluid flow
simulations to convergence. Over the past decades efforts to develop more robust and efficient velocity-pressure algorithms
have resulted in a better understanding of the numerical issues affecting the performance of these algorithms, such as the
choice of primitive variables (density-based versus pressure-based [1]), the type of variable arrangement (staggered versus
collocated [2]), and the kind of solution approach (coupled versus segregated), to cite a few. While consensus regarding best
practices of many issues have been reached within the CFD community, for pressure-based algorithms the coupled versus seg-
regated approach dichotomy has not been completely resolved. This was clearly indicated in a recent review of pressure-
based algorithms for single and multiphase flow conducted by the authors [3], in which it was mentioned that even though
the situation is currently in favor of the segregated approach, recent work seems to indicate that this might be changing.
. All rights reserved.
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Nomenclature

a/
P ; a

/
F ; . . . coefficients in the discretized equation for/

b/
P source term in the discretized equation for /

dPF space vector joining the grid points P and F
DP the matrix D operator
g geometric interpolation factor
H[/] the H operator
H[v] the vector form of the H operator
I the identity matrix
_mf mass flow rate at control volume face f

p pressure
P main grid point
Q general source term
S surface vector
u, v velocity components in x- and y-directions, respectively
v velocity vector
XP volume of the P cell

Greek symbols
/ general scalar quantity
e grid expansion ratio
C diffusion coefficient
l dynamic viscosity
q fluid density

Subscripts
f refers to control volume face
F refers to the F grid point
nb refers to values at the faces obtained by interpolation between P and its neighbors
NB refers to the neighbors of the P grid point
P refers to the P grid point
x, y refers to x and y directions

Superscripts
p refers to pressure
u refers to the u-velocity component
v refers to the v-velocity component
x refers to x-direction
y refers to y-direction

refers to an interpolated value
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This renewed interest in the development of coupled solvers [4,5] is due to the tremendous increase in computer
memory and to the convergence problem experienced by segregated solvers when used with dense computational
meshes [6]. Even though the convergence issue has been addressed successfully through multigrid, parallel processing,
and domain decomposition the convergence issue has not been directly resolved. It is worthwhile in this respect to point
out that density-based Euler methods have been using coupled solvers quite successfully for solving highly compressible
flow problems. In the coupled approach, the conservation equations are discretized and solved as one system of equa-
tions as opposed to the segregated approach where the equation of each variable is solved separately using, previously
computed, best estimate values of the other dependent variables. Although the coupled versus segregated issue is not
directly related to the method used, traditionally it has been the case that pressure-based methods follow a segregated
approach. This state of affairs owes more to the development history of pressure-based algorithms than to any algorith-
mic limitation.

Pressure-based algorithms originated with the work of Harlow and Welch [7] and Chorin [8]. However the real thrust to
this group of algorithms was generated in the early 1970s by the CFD group at Imperial College through the development of
the well-known segregated SIMPLE algorithm (semi-implicit method for pressure linked equations) [9] for incompressible
flows. The CFD research community widely adopted the SIMPLE algorithm which led to the development of a number of SIM-
PLE-like algorithms, a review of which is reported in [10]. Furthermore, the work of Rhie and Chow [11] provided a solution
to the checkerboard problem and expanded the application area of the SIMPLE-like algorithms by enabling the use of a col-
located variable arrangement and setting the ground for a geometric flexibility similar to that of the finite element method
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(FEM) [12]. Additional developments resulted in extending the applicability of the SIMPLE-like algorithms to a wide range of
fluid physics such as compressible [1], free-surface [13], and multiphase flows [14,15].

Several pressure-based coupled algorithms have also been reported in the literature. These algorithms followed two
approaches in their development. In the first, no pressure equation is introduced and the momentum and continuity
equations are discretized in a straightforward manner. Examples of these algorithms include the SIVA (simultaneous var-
iable arrangement) algorithm of Carretto et al. [16], the SCGS (symmetric coupled Gauss Seidel) algorithm of Vanka [17],
the UVP method of Karki and Mongia [18], the method of Braaten [19], and more recently the BIP (Body Implicit Proce-
dure) of Mazhar [20], among others. Since no pressure equation is derived, zeros are present in the main diagonal of the
discretized continuity equation leading to an ill conditioned system of equations. This problem has been addressed, with
various degrees of success, through the use of pre-conditioning [6], penalty formulations [21], or by algebraic manipula-
tions [22].

In the second approach a pressure equation is derived either through the addition of pseudo-velocities [23] as in the seg-
regated SIMPLER algorithm [24] or without the addition of new variables [25] as in the segregated SIMPLE algorithm [9].
Following either method, a set of diagonally dominant equations is obtained. Using the control volume finite element meth-
od (CVFEM), Lonsdale [26] and Webster [5] followed this approach and reported impressive convergence rates and good
scaling behavior with dense meshes. However Lonsdale’s algorithm did not prove to be robust [5].

In a recent article [27], the authors reported on a pressure-based coupled algorithm for the solution of incompressible
flow problems over structured grid systems developed within the context of a finite volume formulation. Their results
showed that, for the problems presented, the CPU time per control volume is nearly independent of the grid size. The objec-
tive of this work is to extend the method to unstructured grid topology and compare the performance of the coupled algo-
rithm with the segregated SIMPLE algorithm for both structured and unstructured grids by solving a series of test problems
showing the effects of grid size, grid non-uniformity, mesh skewness, large pressure gradients, and large source terms on the
convergence rate. Extension into unstructured grid systems entails substantial changes to the algorithm (e.g. using different
numbers of control volume faces depending on the type of elements that compose the mesh, connectivity of the grid, the
algebraic equation solver, and the algebraic multigrid solver for convergence acceleration).

In the remainder of this article a brief description of the Finite Volume discretization process is presented, followed by a
short review of the segregated algorithm. Then the formulation of the coupled algorithm, the most frequently encountered
boundary conditions, the algebraic multigrid solver, and some implementation tips are detailed. Finally, the performance of
the coupled algorithm is illustrated by solving several problems.

2. Finite volume discretization

The conservation equations governing steady, laminar incompressible Newtonian fluid flow are given by
r � ðqvÞ ¼ 0 ð1Þ
r � ðqvvÞ ¼ r � ðlrvÞ � r � ðpIÞ ð2Þ
These equations can be expressed in the general conservative form as
r � ðqv/Þ ¼ r � ðCr/Þ þ Q ð3Þ
where the values of / and C differ depending on the equation represented.
Integrating the general transport equation over the control volume displayed in Fig. 1(a) and transforming the volume

integrals of the diffusion and convection terms into surface integrals through the use of the divergence theorem, the
semi-discretized form of the governing conservation equation using the finite volume method is obtained as
I

oX
ðqv/Þ � dS ¼

I
oX
ðCr/Þ � dSþ

Z Z
X

QdX ð4Þ
Evaluating these integrals using a second order integration scheme yields
X
f¼nbðPÞ

ðqv/� Cr/Þf � Sf ¼ Q PXP ð5Þ
Finally, the equation is expressed in algebraic form by representing the variables at the control volume faces in terms of
nodal values. The resulting equation is written as
a/
P /P þ

X
F¼NBðPÞ

a/
F /F ¼ b/

P ð6Þ
The above equation could equivalently be written as
/P þ
X

F¼NBðPÞ

a/
F

a/
P

/F ¼
b/

P

a/
P

or /P þ
X

F¼NBðPÞ
A/

F /F ¼ B/
P ð7Þ



Fig. 1. (a) Control volume, (b) normal and tangential velocity components at a wall, and (c) decomposition of the surface into two components one aligned
with the grid and one normal to the surface vector.
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For the momentum equation, the pressure gradient term is explicitly displayed as
vP þ
X

F¼NBðPÞ
Av

FvF ¼ Bv
P � DPrpP with DP ¼

XP
au

P
0

0 XP
at

P

2
4

3
5 ð8Þ
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while for the continuity equation the following discrete form is used:
X
f¼nbðPÞ

_mf ¼ 0 with _mf ¼ qvf � Sf ð9Þ
3. The collocated SIMPLE algorithm

In the segregated SIMPLE algorithm, the solution is obtained by iteratively solving the momentum equations and a pres-
sure correction equation, derived from the continuity equation, while accounting for the effects of the pressure field on the
momentum equations through a correction to the velocity field. Denoting corrections with a prime, the corrected fields are
written as
p ¼ pðnÞ þ p0 and v ¼ v� þ v0 ð10Þ
where p0 and v0 are the pressure and velocity corrections, respectively. Thus, before the pressure field is known, the veloc-
ity obtained from the solution of the momentum equation is actually v* rather than v. Hence the equations to be solved
are
v�P þ
X

F¼NBðPÞ
Av

Fv�F ¼ Bv
P � DPrpðnÞP ð11Þ
where the final solution satisfies
vP þ
X

F¼NBðPÞ
Av

FvF ¼ Bv
P � DPrpP ð12Þ
Subtracting the two sets of Eqs. (12) and (11) from each other yields the following equation involving the correction
terms:
v0P þ
X

F¼NBðPÞ
Av

Fv0F ¼ �DPrp0P ð13Þ
Using the Rhie–Chow interpolation [11], the velocity correction along the control volume face, is written as
v0f ¼ v0f � Dfðrp0f �rp0fÞ ¼ �Dfrp0f þ v0f þ Dfrp0f ¼ �Dfrp0f �
X

f¼nbðPÞ
Av

f v0f ð14Þ
To derive the pressure correction equation, the following expanded form of the continuity equation [Eq. (9)] is used:
X
f¼nbðPÞ

_m�f þ
X

f¼nbðPÞ
ðqv0Þf � Sf ¼ 0 ð15Þ
By substituting v0f from Eq. (14) into the continuity equation (Eq. (15)), the pressure correction equation is obtained
as
 X

f¼nbðPÞ
ð�qf Dfrp0f � Sf Þ ¼ �

X
f¼nbðPÞ

_m�f þ
X

f¼nbðPÞ
qf A

v
f v0f � Sf ð16Þ
Neglecting the last term in Eq. (16) as done in SIMPLE [9], the algebraic form of the pressure correction equation is written
as
ap0

P p0P þ
X

F¼NBðPÞ
ap0

F p0F ¼ bp0

P

ap0
F ¼ qf

ðDf SfÞ � Sf

Sf � dPF

ap0

P ¼
X

F¼NBðPÞ
ap0

F

bp0

P ¼ �
X

f¼nbðPÞ

_m�f

ð17Þ
Using the Rhie–Chow interpolation, the mass flow rate _m�f at a control volume face is computed from
_m�f ¼ qf v
�
f � Sf ¼ qf v�f � Sf � qf Df rpðnÞf �rpðnÞf

� �
� Sf ð18Þ
Moreover, neglecting the last term in Eq. (14), the velocity correction is found to be
v0f ¼ �Dfrp0f ð19Þ
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The overall SIMPLE algorithm can be summarized as follows:

1. Solve the momentum equations implicitly for v using the available pressure field.
2. Calculate the D field.
3. Solve the pressure correction equation.
4. Correct v and p.
5. Solve sequentially all other scalar equations (if any).
6. Return to the first step and repeat until convergence.

4. The coupled algorithm

The convergence of the SIMPLE algorithm is highly affected by the explicit treatment of the pressure gradient in the
momentum equation and the velocity field in the continuity equation. Treating both terms in an implicit manner is in es-
sence the aim of any coupled algorithm. This is achieved here by coupling the momentum equation and the pressure equa-
tion form of the continuity equation through a set of coefficients that represent the mutual influence of the continuity and
momentum equations on the pressure and the velocity fields, as described below.

Starting with the semi-discretized momentum equation given by
X
f¼nbðPÞ

ðqvv� lrvÞf � Sf þ
X

f¼nbðPÞ
pf Sf ¼ bPXP ð20Þ
where the pressure gradient term has been integrated over the faces of the control volume and the pressure at each face is
evaluated using
pf ¼ gf pP þ ð1� gfÞpF ð21Þ
substituting Eq. (21) into Eq. (20), and manipulating, the final form of the discretized momentum equations is obtained
as
auu
P uP þ auv

P tP þ aup
P pP þ

P
F¼NBðPÞ

auu
F uF þ

P
F¼NBðPÞ

auv
F tF þ

P
F¼NBðPÞ

aup
F pF ¼ bu

P

avv
P tP þ avu

P uP þ avp
P pP þ

P
F¼NBðPÞ

avv
F tF þ

P
F¼NBðPÞ

avu
F uF þ

P
F¼NB

avp
F pF ¼ bt

P

8>>><
>>>:

ð22Þ
where the coefficients are given by
auu
F ¼ avv

F ¼ lf
Sf � Sf

Sf � dPF
þ k _mf ;0k

auu
P ¼

X
F¼NBðPÞ

auu
F avv

P ¼
X

F¼NBðPÞ
avv

F

auv
F ¼ 0 avu

F ¼ 0

auv
P ¼

X
F¼NBðPÞ

auv
F avu

P ¼
X

F¼NBðPÞ
auv

F

aup
F ¼ ð1� gfÞS

x
f avp

F ¼ ð1� gf ÞS
y
f

aup
P ¼

X
f¼nbðPÞ

gf S
x
f avp

P ¼
X

f¼nbðPÞ
gf S

y
f

bu
P ¼

X
f¼nbðPÞ

ru � ðSf �
Sf � Sf

Sf � dPF
dPFÞ

� �
bv

P ¼
X

f¼nbðPÞ
rv � ðSf �

Sf � Sf

Sf � dPF
dPFÞ

� �

ð23Þ
It should be noted that the single underlined terms in Eq. (22) represent the pressure gradient in its implicit form; while
the double underlined terms account for the velocity component interactions with their values being zero except at wall
boundaries. Even though their values are set at zero in Eq. (23), their inclusion is necessary for the proper implementation
of the algebraic solver.

To derive the pressure equation, the semi-discretized form of the continuity equation, given by
X
f¼nbðPÞ

qf vf � Sf ¼ 0 ð24Þ
is combined with the Rhie–Chow interpolation to yield
X
f¼nbðPÞ

qf ½vf � Dfðrpf �rpfÞ� � Sf ¼ 0 ð25Þ
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Eq. (25) can be expanded into
X
f¼nbðPÞ

qfð�DfrpfÞ � Sf þ
X

f¼nbðPÞ
qf vf � Sf ¼

X
f¼nbðPÞ

qfð�DfrpfÞ � Sf ð26Þ
where
vf ¼ gf vP þ ð1� gfÞvF ð27Þ
Substituting Eq. (27) into Eq. (26), the algebraic form of the pressure equation is obtained as
app
P pP þ apu

P uP þ apv
P vP þ

X
F¼NBðPÞ

app
F pF þ

X
F¼NBðPÞ

apu
F uF þ

X
F¼NBðPÞ

apv
F vF ¼ bp

P ð28Þ
with the coefficients evaluated as
app
F ¼ qf

ðDf Sf Þ � Sf

Sf � dPF

app
P ¼

X
F¼NBðPÞ

app
F

apu
F ¼ ð1� gfÞS

x
f apv

F ¼ ð1� gf ÞS
y
f

apu
P ¼

X
f¼nbðPÞ

gf S
x
f apv

P ¼
X

f¼nbðPÞ
gf S

y
f

bp
P ¼

X
f¼nbðPÞ

qf ð�Dfrpf Þ � Sf �
X

f¼nbðPÞ
qf ð�Dfrpf Þ � Sf �

Sf � Sf

Sf � dPF
dPF

� �
ð29Þ
Combining the discretized momentum and continuity equations [Eqs. (22) and (28)], the following system of equations is
obtained for each control volume:
auu
P auv

P aup
P

avu
P avv

P avp
P

apu
P apv

P app
P

2
64

3
75

uP

vP

pP

2
64

3
75þ X

F¼NPðPÞ

auu
F auv

F aup
F

avu
F avv

F avp
F

apu
F apv

F app
F

2
64

3
75

uF

vF

pF

2
64

3
75 ¼

bu
P

bv
P

bp
P

2
64

3
75 ð30Þ
The above set of equations expressed over the entire computational domain yields a system of equations in the form of
AU ¼ B ð31Þ
where all variables (v, p) are now solved simultaneously. Note that the continuity equation is now written in terms of pres-
sure rather than pressure correction.

The overall coupled algorithm can be summarized as follows:

1. Start with the latest available values ð _mðnÞf ; vðnÞ; pðnÞÞ.
2. Assemble and solve the momentum and continuity equation for v* and p*.
3. Assemble _mf using the Rhie–Chow interpolation.
4. Solve sequentially all other scalar equations (if any).
5. Return to step 2 and repeat until convergence.
5. Boundary conditions

The proper treatment of the boundary conditions is critical to the success of the proposed algorithm because of the cou-
pling between the governing equations. The contribution of a boundary face to the algebraic equation of the control volume
concerned depends on the type of the boundary condition. The details for implementing the most frequently encountered
boundary conditions at a wall, inlet, and outlet are given next.

5.1. The no-slip boundary condition at a moving wall

The general case of a wall moving with a velocity vwð¼ uwiþ vwjÞ is considered; the special case of a stationary wall is
obtained by setting vw to zero. The convection term has no effect on the momentum equation because no flow crosses
the wall. The shear stress is accounted for using the method described next.

The velocity vector at the first interior grid point (Fig. 1(b)), designated by vpð¼ upiþ vpjÞ, is decomposed into two vectors
one tangential (vt) and one normal (vn) to the wall. The wall velocity (vw) being in the tangential direction, the wall shear
stress can be calculated as
sw ¼ l vt � vw

dPw � nw
ð32Þ
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where dPw is the distance vector between the internal and boundary grid point, nw is the outward unit vector normal to the
wall (nw = nw,xi + nw,yj = Sw/Sw), and (dPw � nw) is the normal distance to the wall. Then the shear force Fs is given by
Fs ¼ �swSw ð33Þ
while the tangential velocity vt is computed from
vt ¼ vP � ðvP � nwÞnw ð34Þ
Combining Eqs. (32) and (34), the expanded form of the shear force is written as
Fs ¼
Fs;x

Fs;y

� �
¼ � lSw

dpw � nw

uPð1� n2
w;xÞ � vPnw;xnw;y � uw

vPð1� n2
w;yÞ � uPnw;xnw;y � vw

" #
ð35Þ
The contribution of the wall shear stress can now be incorporated into the coefficients to obtain
auu
P ¼ auu

P þ
lSw

dpw � nw
ð1� n2

w;xÞ avv
P ¼ avv

P þ
lSw

dpw � nw
ð1� n2

w;yÞ

auv
P ¼ auv

P �
lSw

dpw � nw
nw;xnw;y avu

P ¼ avu
P �

lSw

dpw � nw
nw;xnw;y

ð36Þ
Further, the pressure at the wall is extrapolated from the pressure at the main grid point using a zero order profile to yield
pw ¼ pP ð37Þ
and its contribution to the momentum equations is therefore written as
aup
P ¼ aup

P þ Sw;x

avp
P ¼ avp

P þ Sw;y
ð38Þ
Because at a wall the mass flow rate is zero, no modification is needed for the pressure equation so its coefficients remain
unchanged.

5.2. Inlet boundary condition

For an incompressible flow, either the velocity or the pressure can be specified at inlet. Both cases are presented next.

5.2.1. Specified static pressure
The flux at an interior control volume face is a function of the two control volumes straddling the face, while at a bound-

ary face the flux becomes a function of the control volume and the boundary face itself. When the value of the dependent
variable is specified, the corresponding boundary flux can be computed and moved to the source term. In a case with a spec-
ified static pressure at the inlet the pressure is known. However the velocity, being unknown, has to be interpolated. In addi-
tion, the velocity direction should be specified, because it cannot be predicted. By splitting the surface vector into two
components E and T (i.e. S = E+T), with E being aligned with the distance vector and T normal to the S vector (Fig. 1(c)),
the modified coefficients of the momentum equations at the inlet boundary are written as
auu
P ¼ auu

P þ k _mi;0k þ l Si � Si

dpi � Si
bu

P ¼ bu
P þ ðlru � TÞi þ k � _mi;0k þ l Si � Si

dpi � Si

� �
ui � piSi;x

avv
P ¼ avv

P þ k _mi;0k þ l Si � Si

dpi � Si
bv

P ¼ bv
P þ ðlrv � TÞi þ k � _mi;0k þ l Si � Si

dpi � Si

� �
vi � piSi;y

ð39Þ
For the pressure equation the velocity is extrapolated from the nearest control volume and the pressure gradient term is
computed with the known inlet pressure term considered explicitly. The modified coefficients of the pressure equation are
given by
aup
P ¼ aup

P þ qSi;x

avp
P ¼ avp

P þ qSi;y

app
P ¼ app

P þ qi
ðDiSiÞ � Si

Si � dPi

bp
P ¼ Dirp�i � Ti þ qi

ðDiSiÞ � Si

Si � dPi
pi � Dirp�i � Si

ð40Þ
5.2.2. Specified velocity
Because the velocity is known at inlet, the convection term can be treated explicitly. The contribution of the stress term

affects the coefficient of the interior control volume, as well as the boundary itself, and a source term appears. For the pres-
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sure gradient term in the momentum equations, the pressure is extrapolated from the interior, as in the case of a wall. The
set of coefficients for the momentum equations at the inlet are modified as
auu
P ¼ auu

P þ k _mi;0k þ l Si � Si

dpi � Si
avv

P ¼ avv
P þ k _mi; 0k þ l Si � Si

dpi � Si

bu
P ¼ bu

P þ ðlru � TÞi þ k � _mi;0k þ l Si � Si

dpi � Si

� �
ui aup

P ¼ aup
P þ Si;x

bv
P ¼ bv

P þ ðlrv � TÞi þ ½k � _mi;0k þ l Si � Si

dpi � Si
�vi avp

P ¼ avp
P þ Si;y

ð41Þ
Because the flow is incompressible, the mass flow rate at inlet is known. Therefore no modification is needed to the pres-
sure equation and its coefficients remain unchanged.

5.3. Outlet boundary condition

A common boundary condition at an outlet is a specified value for the static pressure. This boundary condition is similar
to the specified static pressure at an inlet boundary condition. The modified coefficients are those given by Eqs. (39) and (40).

6. Linear multigrid solver

Many methods exist for the solution of large systems of linear equations and these can be categorized as being either di-
rect or indirect iterative methods. The use of a direct method is not appropriate in the present context because direct meth-
ods require by far more storage than iterative methods and are usually more time consuming. This is further magnified by
the non-linearity encountered in fluid flow calculations. The algorithm used in this work is a combination of the ILU(0) [28]
algorithm with an additive corrective multigrid method [29]. Surprisingly, this combination is found to provide the simplic-
ity and low storage needs of the basic ILU algorithm with the high convergence rate of multigrid methods.

The simplest form of incomplete factorization is based on taking a subset
P

of nonzero elements from the original coeffi-
cient matrix A while keeping all positions outside this set equal to zero. If

P
is chosen to coincide with the non zero elements of

A, then the factorization is called the ILU(0) [28]. For the ILU(0) method, the factorization does not produce any non zero ele-
ments beyond the sparsity of A so that the pre-conditioner requires at worst as much storage as A. To remedy the deterioration
of the convergence rate with increasing mesh size, the ILU(0) is used as a smoother for an algebraic multigrid solver.

Multigrid algorithms were independently introduced by Federenko [30] (Geometric Multigrid) and Poussin [31] (Alge-
braic Multigrid) in the 60s, and later gained popularity with the work of Brandt [32]. They are considered one of the most
efficient techniques for the numerical solution of PDEs, at least for sequential computers. While standard iterative solvers
(e.g. SOR and ILU) are efficient in removing high frequency errors, they are inefficient in removing the remaining low fre-
quency or smooth errors. Multigrid methods overcome the decay in the convergence rate by using a hierarchy of coarse grids
in addition to the one on which the solution is sought. The fundamental idea is that by restricting the problem to a coarser
grid, the lower frequency errors now appear more oscillatory.

Without going into details, the implementation of a multigrid method involves two stages. In the first stage, the coarse
grids and their connectivity are setup using an agglomeration or coarsening algorithm [33]. In the second stage, a multigrid
cycling procedure is used with a smoother to yield the solution at the finest desired grid. All segregated and coupled results
presented in this work are generated using an algebraic multigrid with an ILU(0) solver as a smoother.

7. Efficient implementation of the coupled solver

In addition to an appropriate fully implicit discretization of the Navier–Stokes’ equations, the performance of the coupled
algorithm is critically dependent on the proper implementation of an iterative solver to ensure that the increase in compu-
tational time incurred in the solution of the enlarged system of equations does not counter balance the advantage of the
higher convergence rate. In one-component systems, the coefficients represent the influences between neighboring ele-
ments, i.e. spatial influences. For a coupled system, in addition to the spatial connectivity, inter-component connections
arise. This renders the use of the algebraic multigrid iterative solver described above unsuitable. To circumvent this hurdle
and efficiently employ the one-component algebraic multigrid algorithm to solving the coupled system, the original spatial
connectivity array describing the topology of the mesh is retained for use in the agglomeration procedure of the multigrid
algorithm, while an expanded connectivity array that accounts for the inter-variable influences is constructed for the iter-
ative solver as described below.

The algebraic system of equations for a single variable u, over a computational domain of size n, has the following form:
a11 : : a1n

: : : :

: : : :

an1 ann
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where [a] is an n � n matrix, and [u] and [b] are vectors of size n (n being the number of elements in the computational
mesh). The two vector [u] and [b] are stored in arrays of size n, while the sparse matrix [a] is usually stored in two vectors
[ap] containing the diagonal elements represented by the array aP(i) of size n and [anb] containing the neighboring coeffi-
cients. The size of [anb] depends on the number of neighbors associated with the mesh elements and is equal to the sum over
all the mesh elements of the number of neighboring elements ði:e:sizeof ½anb� ¼

Pn
i¼1nbðiÞÞ. Access to an element of [anb] is

done via and offset array, as depicted in Fig. 2, whereby the coefficients of the neighbors of the control volume i are stored
in coeff[offset(i)] to coeff[offset(i + 1) � 1].

For a coupled algorithm the equations to be solved can be written for the case of a three component system in the fol-
lowing form:
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From this perspective [a] is now an n � n matrix of sub-matrices of size n�cnc (nc being the number of components), while [u]
and [b] are arrays of vectors of size nc. The sparse matrix [a] of the multi-component system, which now accounts for the
inter-component influence in addition to the spatial influence between the elements, is again decomposed into the two vec-
tors [ap] containing the diagonal elements represented by the array aP(i) of sub-matrices of size n and [anb] containing the
neighboring sub-matrix coefficients. The number of connections for a control volume i in this case becomes nc*nc*nb(i) and
the size of [anb] becomes nc � nc �

Pn
i¼1nbðiÞ. The storage of aP, bP, and the neighboring coefficients is shown in Fig. 3(a). To

solve this system using the standard iterative solver, the sub-matrices are first unraveled and transformed into an N*N sys-
tem of scalar equations (N = n*nc) through the formulation of an extended connectivity matrix. The process followed in con-
structing the coupled connectivity matrix is explained next by referring to the element and its neighbors displayed in Fig. 3(b
and c).

As shown in Fig. 3(b), the chosen element (element 5) is connected to elements 2, 3 and 7. The original spatial or geomet-
ric connectivity matrix is summarized in the upper part of Table 1, which displays the indices for ap, anb, and bp. These indices
are suitable for solving a one-component system, which is the case for a segregated solution algorithm. For a coupled system,
each coefficient is transformed into a 3 � 3 matrix (Fig. 3(c)). The connectivity is maintained by renumbering the elements of
the matrix [a] according to (i*nc + 1,i*nc + 2,i*nc + 3) for the three components, where i is the element number under consid-
eration (5 in this case) and the 1, 2, and 3 refers to the component u,v, and p, respectively. In a similar manner, the elements
of the vector [b] are renumbered as (i*nc + ic), where ic refers to the component number (1 for u, 2 for v, and 3 for p). The
connectivity for the [anb] coefficients is now given by (Nic)*nc + ic, (Nic) being the value in the old connectivity of the chosen
element (element 5 in this case) and ic the component under consideration. The connectivity arrays obtained by applying the
above relations are depicted in Table 1. With this approach, the original algebraic multigrid solver is used with minor
modifications.

8. Results and discussion

The performance of the coupled algorithm is assessed in this section by presenting solutions to the following five laminar
incompressible fluid flow problems: (i) lid-driven flow in a rectangular and a skew cavity, (ii) flow behind a backward facing
step, (iii) sudden expansion in a rectangular cavity, (iv) flow in a Planar Tee-Junction, and (v) natural convection in a trap-
ezoidal cavity. For all problems, results are generated using both triangular and quadrilateral control volumes on three grid
sizes with cell values of 104, 5 � 104, and 3 � 105. The largest grid used was limited by the computational resources available
and not because of any algorithmic limitation. The same initial guess was used for all grid sizes and for both coupled and
segregated methods and the computations were stopped when the maximum residual of all variables, defined as,
ðRESÞ/ ¼max
N
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Fig. 2. Storage of coefficients for a single component system of equations.
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became smaller than a vanishing quantity, which was set at 10�5. All computations were performed on a ‘‘MacBook Pro”
computer with a 2.16 GHz Intel Core Duo processor and 2 GB of RAM.

All problems were solved using both the coupled and segregated approach and the efficiency of the proposed coupled
algorithm is demonstrated by comparing the number of iterations and CPU time required by each method on the various
grids. No under relaxation was used with the coupled approach but it was needed to obtain converged solutions with the
segregated method ðau ¼ av ¼ 0:7 and ap0 ¼ 0:3Þ.

8.1. Comparison of solutions generated using the coupled and segregated solvers

The physical situations for the various problems solved, along with illustrative portions of the quadrilateral and triangular
meshes used are depicted in Fig. 4. The first problem considered, which involves two configurations, is the standard CFD test
case of lid-driven flow in a square (Fig. 4(a)) and a skew (Fig. 4(b)) cavity. It is used here to check the performance of the
coupled approach in predicting recirculating flows on orthogonal and non-orthogonal unstructured grids. The second prob-
lem (Fig. 4(c)) is concerned with separated flows behind steps, which arise in many applications such as in electronic equip-
ment and combustors and is used here to check the effect of a high-pressure gradient on the performance of the coupled
approach. The third problem, depicted in Fig. 4(d), represents a sudden expansion of a flow entering a square cavity with
a side of L from a vertical section with a width of W = L/5 located in the lower left corner of the domain. The problem is solved
for a value of Reynolds number (Re = qvinL/l) of 1000 with the velocity vector at the inlet set at vin(1, 1). The geometry and
boundary conditions of the fourth problem, which deals with the flow split in a Planar Tee-Junction (Fig. 4(e)), are those used
by Hayes et al. [34] with the gauge pressure at the outlets set to zero. The flow enters the domain from its lower part moving
vertically upward with a parabolic velocity profile of v(0, 4x � 4x2). The problem is solved for a Reynolds number value
(Re = qVcW/l, Vc is the centerline velocity at inlet) of 500. The width of the domain W is set at 1 m and the length L at
3 m. The buoyancy-driven flow in a trapezoidal cavity problem, illustrated schematically in Fig. 4(f), is the one analyzed
by Moukalled and Darwish [35] and is used here to check the performance of the new algorithm for sequentially solving
the energy equation with the coupled hydrodynamic equations in the presence of a large source term on non-orthogonal
unstructured grids.

Solutions for the various problems are generated using the coupled and segregated solvers by assuming the flow to be
steady, laminar, and two-dimensional and the resulting flow fields in the domains are visualized by the streamline maps



Fig. 3. (a) Storage vectors for a coupled system with three variables, (b) single component connectivity, and (c) multi-component connectivity.
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presented in Fig. 5(a–f). Differences between the segregated and coupled solutions can be inferred from the u- and v-velocity
contours displayed in Figs. 6 and 7, respectively. As shown, the two sets of contours are on top of each other, indicating that
both solvers produce the same solution.



Table 1
Example of geometric and multi-component connectivity

Geometric connectivity
Element Coefficients
5 aP aN1 aN2 aN3 bP

Connectivity
5 5 2 3 7 5

Multi-component connectivity
Element/scalar Coefficients
5 1 a11

P a12
P a13

P a11
N1 a12

N1 a13
N1 a11

N2 a12
N2 a13

N2 a11
N3 a12

N3a13
N3 b1

P
5 2 a21

P a22
P a23

P a21
N1 a22

N1 a23
N1 a21

N2 a22
N2 a23

N2 a21
N3 a22

N3 a23
N3 b2

P
5 3 a31

P a32
P a33

P a31
N1 a32

N1 a33
N1 a31

N2 a32
N2 a33

N2 a31
N3 a32

N3 a33
N3 b3

P

Connectivity (scalar, iv = 1, 2, 3)
Element/scalar i*3 + iv N1*3 + iv N2*3 + iv N3*3 + iv i*3 + iv
5 1 16, 17, 18 7, 8, 9 10, 11, 12 22, 23, 24 16
5 2 16, 17, 18 7, 8, 9 10, 11, 12 22, 23, 24 17
5 3 16, 17, 18 7, 8, 9 10, 11, 12 22, 23, 24 18
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As a further validation check, pressure and velocity profiles along the vertical centerline of the main channel and the cen-
terline of the horizontal branch for the Tee-Junction problem generated using both solvers are compared and the results are
presented in Fig. 8(a–d). As shown, the profiles fall almost on top of each other confirming the correctness of the developed
method.

8.2. Performance of the coupled solver on unstructured meshes

A summary of the number of iterations, the CPU time, and the CPU time per control volume are presented in Table 2 for
the various problems solved on grids with triangular control volumes. Except for the flow in a Planar Tee-Junction, the num-
ber of iterations required to solve a problem is independent of the grid size. The increase in the number of iterations for the
flow in a Planar Tee-Junction problem is attributed to intermediate flow reversal at the exit section of the horizontal branch
(Fig. 5(e)) before convergence is reached causing larger changes in the coefficients between two consecutive iterations.

As expected, the CPU time increases with the number of the control volumes. A more indicative performance parameter is
the CPU per control volume, which is nearly constant (its percent variation is trivial as compared to the percent variation in
the grid size) for all problems except for the flow in a Planar Tee-Junction (for the reasons stated above).

The above findings are in line with results reported in [27], for the performance of the coupled solver on structured quad-
rilateral control volumes, and a clear indication of a successful extension of the coupled solver to unstructured grid.

8.3. Comparison of performance of the coupled solver with the segregated solver

A summary of the number of iterations and CPU time needed by both segregated and coupled approaches using
quadrilateral and triangular elements are presented for all problems and grid sizes in Table 3. Except for the flow in a Planar
Tee-Junction problem, the number of iterations required by the coupled solver for both types of control volumes is nearly
independent of the grid size. For the segregated solver this number increases with increasing the number of cells in the do-
main. The ratio of the number of iterations required by the segregated algorithm to the number required by the coupled
algorithm (S/C) for quadrilateral (triangular) elements increases from 45 to 546 (78–642), 76 to 342 (46–296), 15 to 149
(17–185), 24 to 204 (28–261), 26 to 92 (31–134), and 12 to 154 (14–143) for the driven flow in a square cavity, driven flow
in a skew cavity, backward facing step, sudden expansion in a square cavity, flow in a Planar Tee-Junction, and natural con-
vection in a trapezoidal cavity problem, respectively. Because the cost per iteration is higher for the coupled solver, it is more
meaningful to compare the CPU time consumed by both solvers. Results in Table 3 indicate that as the grid size increases
from 104 to 3 � 105 quadrilateral (triangular) control volumes, the corresponding ratio of the CPU time needed by the seg-
regated solver to the CPU time required by the coupled algorithm increases from 13 to 115 (13–104), 18 to 71 (8–58), 4 to 31
(3–33), 8 to 56 (6–54), 8 to 22 (6–25), and 5 to 38 (3–37) for the above problems. This represents a tremendous savings as the
total time required by the coupled approach to solve all problems on the coarsest and densest quadrilateral (triangular) grids
used are 209.6 and 11660.1 (339.7 and 12849.3) seconds while the times required by the segregated method are 1844.89 and
525911.74 (2113.11 and 564206) seconds with the average S/C ratio varying from 8.8 to 45.1 (6.22–43.9). This clearly dem-
onstrates the virtues of the coupled approach.

8.4. Effects of the structured and unstructured grid systems on performance

Results presented in Table 3 also reveal that on the coarsest grid used (104 control volumes) the CPU time required by the
coupled solver on structured grid is lower than the CPU time required on unstructured grid. On the densest grid (3 � 105

control volumes) however, the CPU time required on structured grid could be lower or higher than that required on unstruc-



Fig. 4. Physical domain and illustrative triangular and quadrilateral grids used for the (a) driven flow in a rectangular cavity, (b) driven flow in a skew
cavity, (c) flow behind a backward facing step, (d) sudden expansion in a square cavity, (e) flow in a Tee-Junction, and (f) natural convection in a trapezoidal
cavity problems.
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tured grid. While the connectivity of the grid is cheaper to establish on structured meshes in comparison with its connec-
tivity on unstructured grid networks, the higher number of control volume faces associated with quadrilateral elements in-
creases the computational cost. Since the same ILU(0) solver with an additive corrective multigrid method is used for both
structured and unstructured solvers, the competing effects of the grid connectivity and number of control volume faces de-
cide on whether the use of the coupled solver on a structured grid system results in an increase or a decrease in CPU time in
comparison with its use on an unstructured mesh and results in the CPU times reported in Table 3.
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Fig. 8. Comparison of (a) the gauge pressure and (b) u-velocity profiles along the vertical centerline of the channel and (c) the gauge pressure and (d) v-
velocity profiles along the horizontal centerline of the channel generated using the coupled and segregated solvers.

Table 2
Number of iterations, CPU time, and CPU time per control volume required by the coupled solver for the various problems on unstructured triangular meshes of
different sizes

Size Iterations CPU CPU/ c.v. Iterations CPU CPU/ c.v.

Driven flow in a square cavity Sudden expansion in a square cavity
104 18 45.0 0.0045 27 61.1 0.00611
5 � 104 17 205.9 0.004118 26 317.6 0.006352
3 � 105 17 1211.5 0.004038 26 1919.5 0.006398

Driven flow in a skew cavity Flow in a Planar Tee-Junction
104 23 52.7 0.00527 27 59.7 0.00597
5 � 104 24 278.9 0.005578 31 346.0 0.00692
3 � 105 24 1691.3 0.005638 61 4483.8 0.01495

Backward facing step Natural convection in a Trapezoidal cavity
104 22 57.6 0.00576 25 63.6 0.00636
5 � 104 21 246.9 0.004938 25 303.0 0.00606
3 � 105 23 1766.9 0.005889 23 1776.3 0.00592
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Table 3
Comparison of the number of iterations and CPU time required by the segregated and coupled flow solvers for the various problems on meshes of different sizes

Size Quadrilateral elements Triangular elements

# of iterations CPU time # of iterations CPU time

C S S/C C S S/C C S S/C C S S/C

Driven flow in a square cavity
104 17 768 45 26.5 351.2 13 18 1400 78 45.0 582.3 13
5 � 104 17 2444 144 150.5 5621.8 37 17 3412 201 205.9 6249. 30
3 � 105 17 9280 546 1135.0 130890.4 115 17 10917 642 1211.5 125521 104

Driven flow in a skew cavity
104 17 1286 76 30.5 553.39 18 23 1068 46 52.7 436.75 8
5 � 104 18 2599 144 170.5 5672.76 33 24 2191 91 278.9 4873.8 17
3 � 105 21 7190 342 1304.2 92114.74 71 24 7107 296 1691.3 97410 58

Backward facing step
104 25 385 15 48.3 196.9 4 22 377 17 57.6 171.9 3
5 � 104 24 1090 45 240.8 2471.7 10 21 1052 50 246.9 2164.9 9
3 � 105 26 3869 149 1725.6 54289.2 31 23 4257 185 1766.9 58628 33

Sudden expansion in a square cavity
104 23 547 24 31.0 262.6 8 27 761 28 61.1 366.16 6
5 � 104 23 1665 72 198.5 4292.6 22 26 2049 79 317.6 5005.6 16
3 � 105 27 5521 204 1560.7 86619.6 56 26 6791 261 1919.5 104195 54

Flow in a Planar Tee-Junction
104 26 671 26 35.3 295.3 8 27 824 31 59.7 349.2 6
5 � 104 42 1876 45 285.4 4347.8 15 31 2504 81 346.0 5647.8 16
3 � 105 74 6773 92 4045.6 89951.4 22 61 8165 134 4483.8 113552 25

Natural convection in a Trapezoidal cavity
104 25 291 12 38.0 185.5 5 25 345 14 63.6 206.8 3
5 � 104 23 999 43 220.26 3422.9 16 25 977 39 303.0 2566.7 8
3 � 105 23 3536 154 1889.0 72046.4 38 23 3292 143 1776.3 64900 37
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different values of the expansion ratio are considered: 1 (corresponding to uniform grid), 1.001, 1.01, 1.02, 1.05, and 1.1. The
grid generation routine resulted in cells with negative volumes for a grid of size of 3 � 105 control volumes and an expansion
ratio with value of 1.1 for quadrilateral elements (the ratio of the maximum to minimum length of a control volume face is
nearly 2.2 � 1011) and with values of 1.05 and 1.1 for triangular elements. Because of that it was not possible to generate
solutions for these three cases.

Fig. 9 presents examples of non-uniform structured (Fig. 9(a and b)) and unstructured (Fig. 9(c and d)) grid systems for a
grid with size of 5 � 104 control volumes for expansion ratios with values of 1.05 (Fig. 9(a and c)) and 1.1 (Fig. 9(b and d)).
The large variation in the grid aspect ratio is apparent in the figures.

Table 4 presents the number of iterations and CPU time required by the coupled algorithm. For both structured and
unstructured non-uniform grid systems, the number of iterations required to solve the problem is almost independent of
the grid expansion ratio for values of e 6 1.02 on structured and e 6 1.01 on unstructured grid systems for all grid sizes
considered.

For structured grid, the number of iterations almost doubles as the expansion ratio increases from 1 to 1.1. At the highest
value of e, the ratio of the maximum to minimum length of a boundary control volume face increases from 117 to 39, 317 as
the grid size increase from 104 to 5 � 104. This implies that the number of iterations only doubles on such a highly non-uni-
form grid. The CPU time follows a similar trend with its value increasing as the grid expansion ratio increases. As e increases
from 1 to 1.1, the CPU time almost doubles for a grid of size of 104 control volumes, while its value is almost 2.5 times higher
on a grid of size of 5 � 104 cells. A similar behavior is observed with the densest grid used.
Table 4
The effect of the grid distribution on the number of iterations and CPU time required by the coupled flow solver for the driven flow in a skew cavity problem

Type Quadrilateral elements Triangular elements

Size 104 CV 5 � 104 CV 3 � 105 CV 104 CV 5 � 104 CV 3 � 105 CV

e Iteration CPU Iteration CPU Iteration CPU Iteration CPU Iteration CPU Iteration CPU

1 17 30.5 18 170.5 21 1304.5 23 52.7 24 278.9 24 1691.3
1.001 16 27.0 18 171.9 21 1490.3 23 47.1 23 279.0 23 1593.4
1.01 18 34.3 18 262.1 22 1731.1 23 45.8 23 274.1 24 1697.8
1.02 17 33.0 16 242.2 21 1784.9 28 57.2 28 331.7 27 1874.2
1.05 24 45.3 23 321.7 26 2203.7 31 58.9 29 285.6
1.1 37 60.6 37 434.4 30 42.4 31 310.5



For unstructured grid, the number of iterations varies slightly as the expansion ratio increases, with this number increas-
ing from 23 to a maximum of 31 for e = 1.05 (�35% increase in the number of iterations). The variation of CPU time with e is
relatively small with values being slightly dependent on the grid aspect ratio. This difference in performance on structured
and unstructured grids is attributed to the difference in the grid distribution over the computational domain as e increases
(compare grid networks in Fig. 9(a–d)).

The decrease, for some cases, in the required CPU time for a given grid size as e increases even though the number of iter-
ations required for convergence may be higher is due to the increase in the number of inner iterations needed to satisfy the
local convergence criteria. For all computations, the residual reduction factor (RRF), defined as the ratio of the root mean
square of the residuals of the algebraic system at the end of an inner iteration to the root mean square of the residuals at
the start of the iteration process is set at 0.01 with the maximum number of iterations of the multigrid solver during any
global iteration set at 10. The inner iterative process is stopped when either of the above two conditions is reached, which
explains the variations in the CPU time.

Finally it should be noted that for structured and unstructured grid systems, the required number of iterations is almost
independent of the grid size at any value of the grid expansion ratio, which is an important characteristic of a coupled solver.

9. Issues and future extensions

Extensions to the above described coupled algorithm could proceed in several directions. In the present work an algebraic
multigrid method was used to accelerate the convergence of the linearized systems of equations. Further improvement to
performance could be achieved by embedding the current algorithm within a Full Multigrid framework (denoted in the lit-
erature by the Full Approximation Storage, FAS) whereby inter-equations coupling and non-linearity are dealt with by apply-
ing multigrid to the outer iterations [36].

The convective terms have been discretized using the first order upwind scheme [24]. Higher accuracy will be sought by
implementing, within the framework of the normalized variable and space formulation methodology [37], high resolution
schemes following either the deferred correction approach [38] or the more implicit normalized weighting factor method
[39].
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domain, which is bound to affect the convergence rate. As for flow compressibility, its inclusion will influence the discret-
ization of the continuity equation and will require investigating whether to add the energy equation to the coupled system of
continuity and momentum equations or to keep it as a separate equation to be solved independently. Both issues will have to
be addressed in future work.

Another matter that deserves attention is the application of the coupled solver to unsteady flows. In most practical sit-
uations temporal accuracy can be achieved at a high Courant number. In these cases, multiple iterations of the segregated
solver are needed for convergence at any one transient step. The performance advantage of the coupled is expected to carry
to these situations. However for applications where the time scale necessitates a low courant number, the segregated ap-
proach and even the explicit scheme will have an advantage over the coupled approach.

10. Closing remarks

A pressure-based fully coupled method for the solution of laminar incompressible flow problems on unstructured grid
was developed. The method was tested by solving the following five problems: (i) driven flow in a square and a skew cavity,
(ii) flow behind a backward facing step, (iii) sudden expansion in a square cavity, (iv) flow in a Planar Tee-Junction, and (v)
buoyancy-induced flow in a trapezoidal cavity. The performance of the coupled algorithm was assessed by comparing the
number of iteration and CPU time required to produce a solution that converged to a desired level with those required using
the segregated approach. It was found that for problems in which intermediate flow reversals at an outlet boundary do not
occur during the solution, the number of iterations needed by the coupled algorithm is grid independent. Moreover, results
showed a substantial decrease in computational time using the coupled approach when compared to using the segregated
method with the reduction rate increasing as the grid size increases. The CPU times required by the coupled solver on struc-
tured and unstructured grids depended on the grid size with the time required on relatively coarse structured meshes being
lower. Low and moderate variation in the grid aspect ratio did not alter the required number of outer iterations but, rather,
affected the time consumed by the inner iterations with the CPU time increasing as the grid expansion ratio increases. At any
grid expansion ratio, the required number of iterations was almost independent of the grid size.
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